CORRECTIONS

Extracting Hydrophobic Free Energies from Experimental Data: Relationship to Protein Folding and Theoretical Models, by Kim A. Sharp, Anthony Nicholls, Richard Friedman, and Barry Honig*, Volume 30, Number 40, October 8, 1991, pages 9686-9697.

Page 9692. In Table III, the units for the amino acid molar volumes, V, should read Å³ per molecule.

Substrate-Specific Enhancement of the Oxidative Half-Reaction of Monoamine Oxidase, by Anthony K. Tan and Rona R. Ramsay*, Volume 32, Number 9, March 9, 1993, pages 2137-2143.

Page 2140. In Table III, the k_{cat} , K_m , k_3 , and K_D values for MPTP are incorrect. The table should appear as follows:

Table III: Kinetic Parameters for Beef Liver MAO B from Steady-State and Stopped-Flow Half-Reaction Experiments

substrate	steady state		reduction		oxidation		
	$\frac{k_{\text{cat}}}{(\mathbf{s}^{-1})}$	K _m (mM)	$\frac{k_3}{(s^{-1})}$	К _D (mM)	$k_{app} (s^{-1})^a$	$\frac{k_{\text{ox}}}{(\text{mM}^{-1}\text{s}^{-1})^b}$	
kynuramine	2.75	0.084	13.6	1.11	2.17	2.89	
benzylamine	10.0	0.36	10.9	0.14	7.6	29.4	
β -phenylethylamine	3.62	0.067	572	4.5	1.8	5.35	
tryptamine	0.67	0.13	0.63	0.15	2.1	5.45	
5-hydroxytryptamine	0.077	0.28	0.097	0.24	1.7	4.12	
5-methoxytryptamine	0.30	0.40	0.42	0.47	0.5	0.75	
MPTP	3.3	0.30	3.7	0.04	6.0	23.3	
MPP+					no reoxidation		
none					1.3	5.49	

^a At 0.238 mM O₂. ^b The plots of K_{obsd} vs [O₂] have nonzero intercepts, and the slope increases with the concentration of ligand, indicating that E_RS is reoxidized faster than E_R and that $K_D^{E_RS}$ is high. Because the rates of oxidation and reduction of MAO B are similar, the experimental time courses describe the transition from fully reduced enzyme to a steadystate level of oxidation which is determined by the rate constants and the levels of amine and O2 present. The approach to the steady state can be represented as

$$E_{\mathsf{R}} \overset{\mathit{f}([\mathsf{O}_2][\mathsf{S}])}{\underset{\mathit{g}([\mathsf{S}])}{\rightleftharpoons}} E_{\mathsf{o}x}$$

and the observed rate takes the form

$$k_{\text{obsd}} = [k_{11} + k_{12}[S]/(K_D^{E_RS} + [S])][O_2] + k_{13}[S]/(K_m^s + [S])$$

where k_{11} is the bimolecular rate constant for the reoxidation which is given here as k_{ox} . The detailed derivation of this equation is given in Ramsay et al. (1987).